
73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright ©2022 by Loft Orbital Solutions Inc. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-22-B6.5.7.x68666

Future-Proof Mission Control Systems:
Leveraging Agnostic Design for Autonomous and Event-Driven Satellite Operations

Lucas Brémonda*, Brunston Poonb, Gauthier Damienc

a Loft Orbital Solutions, 321 11th Street, San Francisco, California 94103, USA, lucas@loftorbital.com
b Loft Orbital Solutions, 321 11th Street, San Francisco, California 94103, USA, brunston@loftorbital.com
c Loft Orbital Solutions, 321 11th Street, San Francisco, California 94103, USA, gauthier@loftorbital.com

* Corresponding Author

Abstract
The number of small satellite missions launched over the past decade has increased by more than 150%. Driven
largely by the expansion of constellations in low earth orbit (LEO), this number continues to accelerate, and thus the
demand for innovative mission-enabling capabilities has surged as well. In particular, the development of
autonomous, event-driven mission control systems (MCS) is integral to the successful scalability of this industry. For
the operation of individual satellites and constellations, the challenges of architecting an agile MCS are considerable,
and the MCS of the future must be built to adapt on the fly.

To address these challenges and meet the need for reactive and autonomous satellite operations, Loft Orbital has
developed Cockpit, a unique MCS founded upon the principles of agnosticism and modularity. Capable of providing
a simple yet comprehensive experience for payload control and tasking onboard dedicated or rideshare configured
missions, Cockpit balances the degree of control authority provided to each payload—from separate customers and
users—with the feasibility, safety, and optimality of the overall mission. Structured with a clear decoupling of
back-end/front-end architectures, Cockpit comprises a set of micro-services connected via APIs to enable key
benefits such as extensive scalability, focused testability, and reduced dependency on the underlying computing and
satellite architectures. This design enables the same system to control multiple satellites from multiple vendors, each
having multiple payloads from distinct customers, relying on various ground station networks—in a way that is
completely abstracted away from the user and operator.

This paper presents the underlying frameworks and architectural approaches used in developing Cockpit as a
future-proof MCS. It includes key innovations on partitioning the bus, ground stations, and payloads agnostically
from the specific problem space, and leveraging GraphQL API technology to expose highly dynamic datasets.
Together these capabilities provide a scalable, decentralized, and mission-agnostic system to better address the
multi-node/constellation operations future smallsat missions will require.

Keywords: mission control software abstraction architecture constellation

1. Introduction

Loft Orbital is on a mission to build a scalable space
infrastructure, enabling its customers to deploy their
missions in space with minimal complexity and
schedule constraints.

Leveraging existing cloud infrastructure paradigms,
customer mission’s interfaces, specifications, and
concept of operations are used to configure and allocate
resources of the infrastructure (which has both ground
and space-based components). As such, resource
utilization can be optimized—deploying multiple
missions on the same satellite, for example. This
optimization requires resource adaptation, abstraction,

and partitioning, which is precisely what Loft’s
technology implements.

IAC-22-B6.5.7.x68666 Page 1 of 7

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright ©2022 by Loft Orbital Solutions Inc. Published by the IAF, with permission and released to the IAF to publish in all forms.

One of the main principles of Loft’s approach is to
leverage ground and space segment elements tapped
from existing supply chains with significant flight
heritage. This is done to dramatically reduce risk while
providing more control over overall program schedule
and quality. System diversification is key not only to
avoid vendor lock-in, but also to be able to select and
assemble a set of space and ground elements that will
best support a given space mission.

Practically speaking, this means that Loft’s space
infrastructure is built upon satellite buses from multiple
space systems vendors, and by leveraging ground sites
from multiple ground segment networks. It is crucial
that specifics of the various elements used are not
exposed to the customer mission being deployed—Loft
develops abstractions in the space- and
ground-segments to present a universal set of space and
ground interfaces to its customers, regardless of the
underlying hardware stack.

This paper will focus on Cockpit, Loft’s Mission
Control System, which implements operational
abstractions allowing the management of a
heterogeneous set of satellites at scale.

2. Requesting & Scheduling

Once a customer mission has been deployed onto the
infrastructure (the deployment process itself being
outside the scope of this paper), Requesting is the
primary mechanism that customers leverage to task their
assets, whether physical (e.g., a multispectral Earth
observation sensor), or virtual (e.g., a detection
algorithm fed with data collected by other sensors).

Requests issued by customers are handled by Cockpit’s
Requesting system. Requests are a “declaration of
intent”, defined using a constraint-based formulation.
These constraints are grouped into the following
categories: what, where, when, and how.

The what defines the desired operational target:
- Is it a specific physical Payload?
- Is it a virtual one?

- Is it a collection of identical Payloads to be
co-orchestrated? (this concept is called Swarm)

The where defines geospatial constraints:
- Over a certain point?
- Over a set of regions?
- On a certain phase of the orbit only?
- etc.

The when defines temporal constraints:
- As soon as possible?
- Within the next three days?
- Only on Tuesdays?
- etc.

The how places additional constraints on top:
- What range of (forecasted) cloud coverage is
acceptable?
- How much off-nadir maneuvering is
acceptable?
- What should be the Sun elevation during the
execution?
- etc.

As such, when formulated in natural language, Requests
are equivalent to:
- Take a picture using My Multi-Spectral Sensor
over San Francisco sometime next week, only during
daytime, if the expected cloud coverage is less than 20
% and not exceeding an off-nadir angle of 5 degrees.
- Collect RF samples using My SDR Swarm
over California either on Tuesday or on Friday, only
within an elevation angle greater than 40 degrees.
- Activate My Processing Payload whenever
flying over Continental USA.
- etc.

Using constraints, a customer can define in precise
terms what conditions are or are not acceptable for a
given Request, without needing exposure to the actual
intricacies of the underlying systems. This is quite
important, as some of these satellites may support
multiple missions, and therefore the fully consolidated
onboard schedules must remain private. The
formulation of these Request constraints is
platform-independent, which means that the actual type
of satellite, ground station, etc. involved for the
execution of a given Request is irrelevant (although it is
always exposed for awareness). These abstractions are
the basis for the orchestration of Swarms, where the
execution of a given Request may be fragmented and
dispatched onto multiple satellites (as exemplified in the
second example above), potentially each leveraging
differing satellite buses without any operational nor
configuration impact.

IAC-22-B6.5.7.x68666 Page 2 of 7

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright ©2022 by Loft Orbital Solutions Inc. Published by the IAF, with permission and released to the IAF to publish in all forms.

Request AOIs displayed on Cockpit UI.

2.1. Simulation

To process the high-level input collected via the
Requesting mechanism into actionable Tasks that the
various systems involved must execute, system
modelling is used to guarantee the feasibility and safety
of each operation, but also to estimate the side-effects
that each Task would impart:
- How long would each Task take?
- What resources would be allocated?
- Are these resources exclusively accessed (e.g.,
ADCS) or shareable (e.g., onboard storage)?
- Will this Task affect any Tasks already
scheduled?
- etc.

Loft is therefore developing a general-purpose
Simulator which aims to model the complete spacecraft
with mid-fidelity accuracy. The purpose here is to
model ADCS maneuvers, data transfers, link budgets,
power and thermal profiles, subsystem states, etc. to
assess:
- The feasibility of the Schedule.
- The safety of the Schedule.
- The optimality of the Schedule.

Only Operational Scenarios that have been identified as
feasible and safe, and compatible with the set of the
customer-defined constraints, are exposed for selection
and confirmation.

The Operational Scenarios which are returned to the
customer can be ranked using various metrics, revealing
the fact that the absolute notion of optimality is not
defined. Cockpit provides several scenarios that balance
Request input (temporal and/or geospatial constraints,
cloud coverage, etc.). Offering multiple options that
satisfy a Request allows a customer to choose which
constraint is paramount while keeping the system
generally agnostic to that selection criteria. This
flexibility is critical to building an infrastructure which
can scale across customers and missions with varying

concepts of operation. Selecting from a list of feasible
and safe Operational Scenarios prevents customers from
interfering with each other (e.g., for missions which are
deployed on the same satellite).

Operational Scenario ranking and selection
(Pareto front visualization).

2.2. Event-Driven Requesting

In the previous section, emphasis was placed on
user-triggered Requesting, in which a given customer
must be intentional about defining and submitting a
Request at a given moment in time, for a given purpose.
Although the Requesting interface greatly simplifies the
problem definition and allows an automated and
optimized dispatching of how resources of various
systems are allocated on a timeline (i.e., the Schedule)
without exposing any platform-specifics to the end-user,
there is still a human decision maker in the loop that is
initiating the Requesting flow and assessing whether to
proceed or not with the proposed Operational Scenario.

Event-Driven Requesting aims at streamlining the flow
of Requesting, leading to an increased autonomy and
faster response times. Instead of requiring user input
and selection, a customer can define a Pipeline,
connected to event sources, and its “activation logic”.

Illustration of Event-Driven Requesting flow.

To give a practical example of this concept, using this
feature a customer can define a Pipeline that can derive
events from a wildfire API (e.g., data provided by
NOAA), cross the information with social media (e.g.,
Twitter) to derive a “wildfire event” of high likelihood.
This logic then serves as the basis for an automated
Request generation, submission, and selection process
(where selection of an Operational Scenario can be

IAC-22-B6.5.7.x68666 Page 3 of 7

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright ©2022 by Loft Orbital Solutions Inc. Published by the IAF, with permission and released to the IAF to publish in all forms.

defined based on parameter importance), providing an
end-to-end data collection plan involving no human
decision maker in the loop during its execution,
reducing overall collection latency.

3. Operations

To truly enable end-to-end automation of the system,
not only must the previously-described Task generation
be automated, but so must the rest of the
chain—uploading, execution, monitoring, recovery, and
artifact downlink of Tasks.

For this purpose, operational abstractions exist in
Cockpit that also reduces the discrepancies between the
various systems involved at operational level,
promoting harmonized satellite operations paradigms
and tools (even though the underlying satellite platforms
are completely different, since they are coming from
different vendors with no overlap in terms of protocols,
command & control concepts, telemetry, etc.).

The way this problem has been addressed is by
modelling each system (both space and ground) as a tree
of Components, whose paradigms closely parallel
common object-oriented programming (OOP) patterns.
As a result, only a handful of interactions must be
leveraged at operational level, greatly reducing the
overall command & control complexity, on top of
unifying the “control plane” of the various systems.

Leveraging these abstractions, an Auto-Pilot has been
developed which takes care of orchestrating the various
parts of the system automatically:
- Performing in-pass operations.
- Performing out-of-pass tasks.
- Raising alerts for off-nominal telemetry or
system status.
- Recovering from anomalies, when necessary.

The approach taken by Loft in this instance is closely
modelled after common CI/CD patterns, which describe
sequences of jobs. Jobs typically consist of atomic flight
Procedures and are aimed at accomplishing a certain
Objective. Depending on the result of the execution of a
given Job, the Auto-Pilot decides what Job to execute
next. If a Job has failed, the running Sequence is
cancelled and a recovery Sequence starts, so that the
Objective can still be met. If no recovery Sequence is
defined, the status of the Activity will be set to “Error”,
and an Operator will receive a notification to address
the problem. By incorporating this sequential logic and
conditional execution of modular and flexible
components, the Auto-Pilot can manage complex
operational Plans.

Auto-Pilot Sequences shown in the Cockpit Web App.

The Auto-Pilot executes exactly the same flight
Procedures that have been written and validated via
manual operations during the LEOP phase, reducing the
overall complexity and avoiding code and logic
duplication. These Procedures can be dynamic; they
contain logic which adapts to the state of the system
(e.g., dynamically requesting missing back-orbit
telemetry). Further, these flight Procedures are tested
prior to being executed by the Auto-Pilot in
development/integration environments which operate
under a test-like-you-fly paradigm, reducing operational
risk.

As a result, the infrastructure is today fully auto-piloted,
with team members being on-call in case of an
off-nominal scenario. This is quite fundamental in
supporting the “SatDevOps” approach coined by Loft,
which does not have any Satellite Operations (SatOps)
team by design; but rather dispatches SatOps knowledge
and responsibilities across the various engineering
teams. Engineers are trained and rotate on-call
responsibility as Satellite Operators and Flight
Directors, granting requisite authority to respond to
anomalies. With automated telemetry monitoring and
alerting, safety of the space and ground infrastructure is
assured while enabling an on-call rather than on-console
paradigm for operations.

Cockpit interfaces with multiple ground segment
networks and is capable of automatically managing
Contacts and Reservations. It abstracts away the
differences between networks; all ground stations are
similarly exposed to the rest of the system, even though
the underlying networks may have vendor-specific
interfaces.

4. Flight Dynamics

In Cockpit, flight dynamics are divided into four topics:
- State Estimation and Prediction.
- Guidance & Navigation.
- Constellation Geometry Management.
- Conjunction Assessment and Avoidance.

IAC-22-B6.5.7.x68666 Page 4 of 7

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright ©2022 by Loft Orbital Solutions Inc. Published by the IAF, with permission and released to the IAF to publish in all forms.

Each topic is handled by a different service.

The state estimation and prediction services are critical
aspects of the operations infrastructure within Cockpit.
The computation of ground station access windows and
elevation profiles, aided by orbital data provided by
third-party data sources (e.g., 18th SDS), allows the
microservice which orchestrates the ground segment to
automatically reserve passes with ground station
providers, and to cancel passes when scheduled payload
activities preclude the ability to take a pass. These
services also provide information to the Simulator and
Requester services, to enable the use of geospatial
constraints in Requests. Customers can use the flight
dynamics data in their own Pipelines and external
systems.

The other services (for constellation geometry
management and conjunction assessment/avoidance) are
designed to alleviate the operational burden of
maintaining and managing a constellation so that the
customer can focus on payload operations. For
particularly high-risk events, the same alerting system
described in the Operations section which handles
Operator notifications will notify a SatDevOps operator
to take further action.

By building these flight dynamics services into Cockpit,
it allows the entire system to use a single source of truth
for synchronicity while keeping payload operations
separate from satellite management.

5. Data Processing & Delivery

The various collected artifacts are automatically
downlinked from the spacecraft, and need to go through
an automated process to:
- Detect missing/corrupted fragments (and
potentially re-downlink them)
- Isolate the various data streams
- Package multiple files into consolidated
deliverables

Once the deliverables have been created, they are
automatically delivered to customer-specified
endpoints, closing the Requesting loop and guaranteeing
an end-to-end traceability from Request to Deliverable.

The Data Processing and Delivery services are designed
so that users of their interfaces do not need to consider
the space segment when developing software that relies
on the delivery of those artifacts. The data deliveries can
be treated like any ground-based data pipeline, using
common interfaces. The re-downlink and consolidation
of artifacts allows those users to achieve their objectives

without requiring familiarity with spacecraft operations,
the delivery mechanism of the ground station providers,
or the transmission methods of the satellites.

Data Processing and Delivery services are also
responsible for forwarding relevant telemetry to
customers—payload telemetry, bus pointing vectors,
and more; these processes are similarly designed to be
as mission-agnostic as possible to enable the scalability
of these systems to constellation- and infrastructure-
scale.

The delivery path from Cockpit is cloud-agnostic, again
allowing for flexibility in supporting customers with
different technology stacks and needs.

6. Interfaces

Cockpit exposes two kinds of interfaces: programmatic
interfaces, mostly used for scripted access,
machine-to-machine interfacing; and a graphical user
interface, to support human-computer interaction.

The system is designed to be API-centric: the API is the
first-class citizen, and the Web App only acts as a
graphical façade which leverages API-exposed features.
It also means that every interaction of a user with the
graphical interface can be scripted and automated.

6.1. Programmatic Interface

Cockpit exposes a Web API following the GraphQL
standard [5], which sits on top of HTTP(S).

A GraphQL query to the Cockpit API.

In Cockpit, models are heavily interconnected, hence
using a graph data structure is a logical choice. We
selected GraphQL as our API specification and query
language. It simplifies exploration of complex datasets
and makes the Web App (and customer-facing API
accesses) more efficient, as GraphQL lets it query for
exactly the data it needs in a single query.
Cockpit also leverages the Schema Federation feature of
GraphQL, which consolidates the APIs of its various
sub-services into a global (“federated”) API, exposing a

IAC-22-B6.5.7.x68666 Page 5 of 7

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright ©2022 by Loft Orbital Solutions Inc. Published by the IAF, with permission and released to the IAF to publish in all forms.

single endpoint to the user. Consequently, both internal
and external consumers of these APIs are relieved from
being tightly coupled to the internal microservice
architecture and its access patterns.

A subset of data model relationships in Cockpit.

Additionally, a Python software development kit (SDK)
has been developed, which makes scripted interactions
with Cockpit’s objects (via the API) easy using native
Python.

from cockpit.asset import Satellite

yam_3 = Satellite.get(name=”YAM-3”)

simera = yam_3.payloads.get(name=”Simera”)

6.2. Graphical Interface

The Cockpit Web App is useful from both an
operational and visibility perspective. It can be used to
manually perform many of the same operations which
are available via the API, like presenting a unified view
of payload activities, generating Requests, selecting
Operational Scenarios, viewing Flight Dynamics data,
monitoring individual satellite Schedules, or checking
Ground Station status (among many other capabilities).

Various Cockpit Web App displays.

The Web App allows operations at multiple levels of
abstraction—it is designed both for customers (to
manage Requests) and for SatDevOps Users (to monitor

low-level connections and status). Further, visual
telemetry monitoring is available for operational
awareness and critical manual operations.

In combination with the authorization/authentication
model of Cockpit, the Web App allows for secure
operation of the satellite without necessarily requiring
operations to occur at a specific physical mission
control center. This creates operational flexibility and is
also a key part of Loft’s SatDevOps approach to satellite
operations.

7. Security

Cockpit has an Identity & Access Management (IAM)
system, providing authentication and authorization
mechanisms. It is designed to be secure while allowing
operation and monitoring of payload and satellite
activities to be location independent. It enables secure
access to payload telemetry, data, and operation flows.
Access to the API is also controlled by this system
through access delegation.

7.1. Authentication

For authentication, a JWT-based mechanism [1] is used.
Tokens are obtained via an OAuth2 [2] mechanism,
powered by third-party platforms (Google Firebase and
Okta are currently supported). This allows
interoperability with existing identity providers,
reducing the attack surface.

7.2. Authorization

Each User can be given different Roles, each Role
providing various access privileges into the system. In
this manner, fine-grained control and high-level
requesting can co-exist in the same MCS platform.

In a typical scenario, a Satellite Operator on shift may
be (temporarily) granted the Satellite Admin Role (with
command & control authority), while a Satellite
Operator in training may only be given the Satellite
Operation Viewer Role, only allowing read-only access
into the state of the system, without any possibility of
altering it. Similarly, customers have a specific set of
associated Roles which are granting them
Requesting-level access without allowing any
infrastructure-level management authority.

Cockpit provides the concept of Teams, complementary
to User-level granularity, allowing group management
of Users. For example, a User on the Satellite Operator
Admin Team is granted the associated Role.

IAC-22-B6.5.7.x68666 Page 6 of 7

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright ©2022 by Loft Orbital Solutions Inc. Published by the IAF, with permission and released to the IAF to publish in all forms.

The intention here is to implement a Zero Trust [3]
security model where no distinction is being made
between “insiders” and “outsiders”, therefore greatly
reducing the attack surface of the system, and also better
partitioning duties and escalation paths. The Roles,
Teams, and Users grant tiered access to the API
depending on whether they need access to the full
low-level operational abstractions of Cockpit or only
limited access to high-level Requesting and Data
Delivery flows.

8. Infrastructure

Cockpit was designed to be cloud-first. It leverages the
scalability of modern cloud architectures by running its
services in Kubernetes [4]. Cockpit extends its
agnosticism to the cloud infrastructure on which it is
deployed, enabling its deployment (supporting customer
requirements) and connection (via its Data Delivery
systems) to multiple cloud providers. It lowers
operating costs (and carbon emissions) by starting
containers on-demand as they are needed.

Containerizing its services enables long-term scalability
and modularity. It allows different services to be written
in different languages, deployed on different hardware
platforms, and takes advantage of existing software
tooling to improve availability and reliability.

Loft’s ground infrastructure also extends to the ground
station networks supported by Cockpit. Services within
our infrastructure maintain a network backbone that
allows interoperability between cloud providers and
ground station providers, in a manner that is transparent
to both Cockpit and any User.

Loft also contributes to the open-source infrastructure
tooling community with Cuebe [6], a Kubernetes
release manager powered by CUE (open-source data
validation language and inference engine).

9. Conclusion

The concepts of operation proliferating in the new space
age: operating a heterogenous satellite constellation,
ridesharing multiple payloads on a single satellite,
flying satellites without dedicated operators, rapid
payload development and launch timelines—all pose
considerable challenges, but also offer many advantages
in the rapidly changing space environment. By creating
a mission control system that is architected to be
modular and system-agnostic, Cockpit enables the same
velocity and agility to be applied to the operational
aspects (payload, satellite, ground segment, or data
management) of any space mission.

Cockpit is more than a mission control system—it is a
mission enablement system. Decoupling concepts which
were historically intrinsically coupled—separating
payload operations from satellite bus operations,
maintaining unified interfaces for both low-level
operations and high-level user requests, keeping
operational concepts (requests, data deliveries, etc.)
untethered to the satellite platforms or ground station
networks they rely on—enables the type of scalable,
mission- and platform- agnostic operations that future
multi-node smallsat missions require.

The use-case for such an MCS is analogous to the
transformative impact that cloud services have had on
software development. The aerospace industry (and
other engineering disciplines more broadly) benefits
from the commoditization of hardware and software; it
encourages competition, drives down cost, and sparks
the creation of better products. It is that sea change
which creates the need for a similarly flexible, capable,
and innovative mission control system that Cockpit
fulfils.

Fundamentally, Cockpit is what the foundations of
space infrastructure as a service looks like. As more
organizations consider the total lifetime cost of
operating their own space assets or incorporating space
into their portfolio, they must consider the implications
of the central role that their mission control system
plays in operations, data management, expansion
opportunities, and, ultimately, mission success.

References

[1] JWT
https://datatracker.ietf.org/doc/html/rfc7519

[2] OAuth2
https://datatracker.ietf.org/doc/html/rfc6749

[3] Zero Trust
https://ldapwiki.com/wiki/Zero%20Trust

[4] Kubernetes
https://kubernetes.io/

[5] GraphQL
https://graphql.org/

[6] Cuebe
https://github.com/loft-orbital/cuebe

IAC-22-B6.5.7.x68666 Page 7 of 7

https://github.com/loft-orbital/cuebe
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6749
https://ldapwiki.com/wiki/Zero%20Trust
https://kubernetes.io/
https://graphql.org/
https://github.com/loft-orbital/cuebe

